$证明:(1)∵CD⊥AB(已知),$
$∴∠1+∠3=90°(垂直定义).$
$∵∠1+∠2=90°(已知),$
$∴∠3=∠2(同角的余角相等).$
$∴DE∥BC(内错角相等,两直线平行).$
$(2)∵DE//BC $
$∴△ADE∽△ABC$
$∵\frac {AD}{DB}=\frac {2}{3}$
$∴\frac {AD}{AB}=\frac {2}{5}$
$∴\frac {S_{△ADE}}{S_{△ABC}}=(\frac {AD}{AB})=\frac {4}{25}²$
$∵S_{△ABC}=25$
$∴S_{△ADE}=4$