电子课本网 第38页

第38页

信息发布者:
$解:【问题呈现】证明:\because \triangle ABC和\triangle ADE都是等边三角形,$
$\therefore AD=AE,AB=AC,\angle DAE=\angle BAC=60^{\circ},$
$\therefore \angle DAE-\angle BAE=\angle BAC-\angle BAE,$
$\therefore \angle BAD=\angle CAE,$
$\therefore \triangle BAD≌\triangle CAE(\mathrm {SAS}),$
$\therefore BD=CE.$
$【类比探究】\because \triangle ABC和\triangle ADE都是等腰直角三角形,$
$\therefore \frac {AE}{AE}=\frac {AB}{AC}=\frac {1}{\sqrt{2}},\angle DAE=\angle BAC=45^{\circ},$
$\therefore \angle DAE-\angle BAE=\angle BAC-\angle BAE,$
$\therefore \angle BAD=\angle CAE,$
$\therefore \triangle BAD∽\triangle CAE,$
$\therefore \frac {BD}{CE}=\frac {AB}{AC}=\frac {1}{\sqrt{2}}=\frac {\sqrt{2}}{2}.$
$【拓展提升】(1)\because \frac {{AB}}{{BC}}=\frac {{AD}}{{DE}}=\frac {3}{4},\angle ABC=\angle ADE=90^{\circ},$
$\therefore \triangle ABC∽\triangle ADE,$
$\therefore \angle BAC=\angle DAE,\frac {AB}{AC}=\frac {AD}{AE}=\frac {3}{5},$
$\therefore \angle CAE=\angle BAD,$
$\therefore \triangle CAE∽\triangle BAD,$
$\therefore \frac {{BD}}{{CE}}=\frac {AD}{AE}=\frac {3}{5}.$
$(2)由(1)得:\triangle CAE∽\triangle BAD,$
$\therefore \angle ACE=\angle ABD,$
$\because \angle AGC=\angle BGF,$
$\therefore \angle BFC=\angle BAC,$
$\therefore \sin \angle BFC=\frac {BC}{AC}=\frac {4}{5}.$