电子课本网 第37页

第37页

信息发布者:


D
$\frac{2\sqrt{3}}{3^{1012}}$
(更多请点击查看作业精灵详解)
$解:(1)\because 四边形ABCD是矩形,$
$\therefore \angle C=90^{\circ},$
$\therefore CF=3,CD=4,$
$\therefore DF=\sqrt{C{D}^2+C{F}^2}=\sqrt{{3}^2+{4}^2}=5,$
$由翻折的旋转可知:\triangle DQC≌\triangle DQE,$
$\therefore CD=ED=4,EQ=CQ,$
$\therefore EF=DF-DE=5-4=1,$
$设EQ=CQ=x,$
$在Rt\triangle EFQ 中,EF^2+EQ^2=FQ^2,$
$\therefore 1^2+x^2=(3-x)^2,$
$\therefore x=\frac {4}{3},$
$\therefore CQ=\frac {4}{3}.$
$解:(2)①如图2-1中,结论:AE-2EG=0.$
$理由:$

$\because DE=DC=4,DG=2,DA=8,$
$\therefore DE^2=DG\cdot DA,$
$\therefore \frac {DE}{DA}=\frac {DG}{DE},$
$\because \angle ADE=\angle EDG,$
$\therefore \triangle EDG∽\triangle ADE,$
$\therefore \frac {EG}{AE}=\frac {ED}{AD}=\frac {1}{2},$
$\therefore AE=2EG,$
$\therefore AE-2EG=0.$
$②如图2-2中,过点E作EH⊥AD于H.$

$\because AE=2EG,$
$\therefore AE+2BE=2EG+2BE=2(BE+EG),$
$\therefore 当B,E,G共线时,BE+EG的值最小,$
$此时AE+2BE的值最小,$
$\because AB∥EH,$
$\therefore \frac {EH}{AB}=\frac {GH}{AG},$
$\therefore \frac {HG}{HE}=\frac {3}{2},$
$设HE=2k,HG=3k,$
$在Rt\triangle DHE中,DE^2=EH^2+DH^2,$
$\therefore 4^2=(2k)^2+(3k+2)^2,$
$解得,k=\frac {-6+8\sqrt{3}}{13}或\frac {-6-8\sqrt{3}}{13}(舍弃),$
$\therefore E到边AD的距离为\frac {-12+16\sqrt{3}}{13}.$