$解:过点C作CE⊥AD于E,$
$在Rt△DEC中,∠CDE=37°,$
$∴tan{37}°=\frac {CE}{DE},即DE=\frac {CE}{tan{37}°},$
$在Rt△BCE中,∠CBE=70°,$
$∴tan{70}°=\frac {CE}{BE},即BE=\frac {CE}{tan{70}°},$
$∵BD=DE-BE,$
$∴\frac {CE}{tan{37}°}-\frac {CE}{tan{70}°}=32,$
$解得CE≈33,$
$∴BE=\frac {CE}{tan{70}°}≈\frac {33}{2.75}=12,$
$在Rt△ACE中,∠CAE=47.5°,$
$∴tan{47}.6°=\frac {CE}{AE},$
$即AE=\frac {CE}{tan{47}.6°}≈30,$
$∴AB=AE+BE=30+12=42(海里),$
$答:海岛A,B之间的距离约为42海里.$