$解:∵\frac{1}{a}+\frac{1}{b}=\frac{1}{2},\frac{1}{b}+\frac{1}{c}=\frac{1}{3},\frac{1}{a}+\frac{1}{c}=\frac{1}{4},$
$∴ \frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4},$
$即\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=\frac{13}{12}$
$∴\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{13}{24}.\ $
$根据题意,得 abc ≠0,\ $
$∴\frac{abc}{ab+bc+ac} =\frac{abc÷abc}{(ab+bc+ac)÷abc}=\frac{1}{\frac{1}{c}+\frac{1}{a}+\frac{1}{b}}=\frac{24}{13}$