电子课本网 第90页

第90页

信息发布者:
1
$解:原式=x-1.$
$由题意,得x-1≠0,x-2≠0,x^2-2x+1≠0,$
$ ∴x≠1,x≠2.$
$∴x的值只能取3.$
$此时原式=2$
$-\frac{65}{36} $
$解:∵x^2+y^2=4xy,$
$∴x^2+2xy+y^2=6xy,x^2-2xy+y^2=2xy.$
$∴(x+y)^2=6xy,(x-y)^2=2xy.$
$∴\frac{(x+y)^2}{(x-y)^2}=\frac{6xy}{2xy},即(\frac{x+y}{x-y})^2=3.$
$∵y>x>0.$
$∴\frac{x+y}{x-y}<0.$
$∴\frac{x+y}{x-y}=-\sqrt{3}$
3
$解:原式=\frac{3}{a-b}$
$∵a-b-1=0,$
$∴a-b=1.$
$∴原式=3$
$解:∵\frac{1}{a}+\frac{1}{b}=\frac{1}{2},\frac{1}{b}+\frac{1}{c}=\frac{1}{3},\frac{1}{a}+\frac{1}{c}=\frac{1}{4},$
$∴ \frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4},$
$即\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=\frac{13}{12}$
$∴\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{13}{24}.\ $
$根据题意,得 abc ≠0,\ $
$∴\frac{abc}{ab+bc+ac} =\frac{abc÷abc}{(ab+bc+ac)÷abc}=\frac{1}{\frac{1}{c}+\frac{1}{a}+\frac{1}{b}}=\frac{24}{13}$