$ \begin{aligned} 解:原式&=\frac x{x-4} \cdot \frac {(x+2)(x-2)-x(x-1)}{x(x-2)^2} \\ &=\frac x{x-4} \cdot \frac {x-4}{x(x-2)^2} \\ &=\frac 1{(x-2)^2} \\ \end{aligned}$
$ 当x=3-\sqrt {2}时,原式=\frac 1{(3-\sqrt {2}-2)^2}=\frac 1{(1-\sqrt {2})^2}=\frac 1{3-2\sqrt {2}}=3+2\sqrt {2} $