电子课本网 第139页

第139页

信息发布者:
$ 解:原式=\frac {(a+b)^2}{(a-b)^2}×\frac {2(a-b)}{3(a+b)}-\frac {4a^2}{(a+b)(a-b)}×\frac b{3a} $
$=\frac {2(a+b)}{3(a-b)}-\frac {4ab}{3(a+b)(a-b)} $
$=\frac {2(a+b)^2-4ab}{3(a-b)(a+b)} $
$=\frac {2a^2+2b^2}{3a^2-3b^2} $
$当a=\sqrt3,b=\sqrt2时,原式=\frac {2×(\sqrt3)^2+2×(\sqrt2)^2}{3×(\sqrt3)^2-3×(\sqrt2)^2}=\frac {10}3$
$ 解:原式=\frac {x-2}{x-1}÷\frac {(x+1)(x-1)-3}{x-1} $
$=\frac {x-2}{x-1}÷\frac {x^2-4}{x-1} $
$=\frac {x-2}{x-1}×\frac {x-1}{(x+2)(x-2)} $
$=\frac 1{x+2}$
$ 当x=\sqrt {5}-4时,原式=\frac 1{\sqrt {5}-4+2}=\frac 1{\sqrt {5}-2}=\sqrt {5}+2 $
$9+2\sqrt {3}$
$15+2\sqrt {3}$
$解:(3)猜想:S_{n+1}-S_{n}=6n-3+2\sqrt {3}$
$S_{n+1}-S_{n}=(1+\sqrt {3}n)^2-[1+(n-1)\sqrt {3}]^2$
$=[2+(2n-1) \cdot \sqrt {3}]×\sqrt {3}$
$=3(2n-1)+2\sqrt {3}=6n-3+2\sqrt {3}$
$(3)当a=1,b=3时,T=t_{1}+t_{2}+t_{3}+···+t_{50}$
$=S_{2}-S_{1}+S_{3}-S_{2}+S_{4}-S_{3}+···+S_{51}-S_{50}$
$=S_{51}-S_{1}$
$=(1+50\sqrt {3})^2-1$
$=7500+100\sqrt {3}$