$解:(3)猜想:S_{n+1}-S_{n}=6n-3+2\sqrt {3}$
$S_{n+1}-S_{n}=(1+\sqrt {3}n)^2-[1+(n-1)\sqrt {3}]^2$
$=[2+(2n-1) \cdot \sqrt {3}]×\sqrt {3}$
$=3(2n-1)+2\sqrt {3}=6n-3+2\sqrt {3}$
$(3)当a=1,b=3时,T=t_{1}+t_{2}+t_{3}+···+t_{50}$
$=S_{2}-S_{1}+S_{3}-S_{2}+S_{4}-S_{3}+···+S_{51}-S_{50}$
$=S_{51}-S_{1}$
$=(1+50\sqrt {3})^2-1$
$=7500+100\sqrt {3}$