电子课本网 第128页

第128页

信息发布者:
$解:(1) ① 由题意, 得 A D=D C=D E$
$\therefore \angle D E A=\angle D A E$
$\because \angle A D C=90^{\circ}, \angle C D E=\alpha$
$\therefore \angle A D E=90^{\circ}+\alpha$
$\therefore \angle D E A=\frac{1}{2}[180^{\circ}-(90^{\circ}+\alpha)]=45^{\circ}-\frac{\alpha}{2}$
$② \triangle A E F 是等腰直角三角形, 理由:$
$\because \angle C D E=\alpha, D E=D C$
$\therefore \angle D E C= \frac{1}{2}(180^{\circ}-\alpha)=90^{\circ}-\frac{1}{2} \alpha$
$\therefore \angle A E F=\angle D E C-\angle D E A= 90^{\circ}-\frac{1}{2} \alpha-(45^{\circ}-\frac{\alpha}{2})=45^{\circ}$
$\because D F \perp A E, A D=D E$
$\therefore D F 垂直平分AE$
$∴FA=FE$
$∴∠EAF=∠AEF=45°$
$∴∠AFE=90°$
$∴△AEF是等腰直角三角形$(更多请点击查看作业精灵详解)
$证明:(1)如图,连接BD,交AC于点O$
$∵四边形ABCD是平行四边形$
$∴ BO=DO$
$∵BE=EF$
$∴OE是△BDF 的中位线$
$∴OE//DF,即DF//AC$
(更多请点击查看作业精灵详解)
$2 \sqrt{10} $