解 :由绝对值的意义,得$x≥0$
当$0≤x≤1$时,$|1- \sqrt {(x-1)²}|=|1-(1-x)|=x$恒成立;
当$x>1$时,$|1- \sqrt {(x-1)^2}|=|1-(x-1)|=|2-x|=x$,解得$x=1$,不符合题意,舍去
则$0≤x≤1$
∵$\sqrt {x^2+\frac {1}{4}-x}+ \sqrt {x²+\frac {1}{4}+x} =\sqrt {(x-\frac {1}{2})^2} + \sqrt {(x+\frac {1}{2})^2}$
∴原式$=|x-\frac {1}{2}|+x+\frac {1}{2}$
当$0≤x≤\frac {1}{2}$时,原式$=\frac {1}{2}-x+x+\frac {1}{2}=1$;
当$\frac {1}{2}<x≤1$时,原式$=x-\frac {1}{2}+x+\frac {1}{2}=2x$
综上,$\sqrt {x²+\frac {1}{4}-x}+ \sqrt {x²+\frac {1}{4}+x}=\begin {cases}{1(0≤x≤\frac {1}{2})}\\{ 2x(\frac {1}{2}<x≤1)}\end {cases}$