电子课本网 第132页

第132页

信息发布者:

解:∵​$x≤-1$​
∴​$x-1<0$​,​$x+1≤0$​
∴原式​$=-(x-1)-(x+1)=-2x$​
解:原式​$= \sqrt {(x+\frac {1}{x})^2} - \sqrt {(x-\frac {1}{x})^2}$​
​$=|x+\frac {1}{x}|-|x-\frac {1}{x}|$​
∵​$0<x<1$​,∴​$x+\frac {1}{x}>0$​,​$x-\frac {1}{x}<0$​
∴原式​$=(x+\frac {1}{x})+(x- \frac {1}{x})=2x$​
解 :由绝对值的意义,得​$x≥0$​
当​$0≤x≤1$​时,​$|1- \sqrt {(x-1)²}|=|1-(1-x)|=x$​恒成立;
当​$x>1$​时,​$|1- \sqrt {(x-1)^2}|=|1-(x-1)|=|2-x|=x$​,解得​$x=1$​,不符合题意,舍去
则​$0≤x≤1$​
∵​$\sqrt {x^2+\frac {1}{4}-x}+ \sqrt {x²+\frac {1}{4}+x} =\sqrt {(x-\frac {1}{2})^2} + \sqrt {(x+\frac {1}{2})^2}$​
∴原式​$=|x-\frac {1}{2}|+x+\frac {1}{2}$​
当​$0≤x≤\frac {1}{2}$​时,原式​$=\frac {1}{2}-x+x+\frac {1}{2}=1$​;
当​$\frac {1}{2}<x≤1$​时,原式​$=x-\frac {1}{2}+x+\frac {1}{2}=2x$​
综上,​$\sqrt {x²+\frac {1}{4}-x}+ \sqrt {x²+\frac {1}{4}+x}=\begin {cases}{1(0≤x≤\frac {1}{2})}\\{ 2x(\frac {1}{2}<x≤1)}\end {cases}$​
B
2036

解:​$(1)\sqrt {11-6×\sqrt {2}}= \sqrt {3²-2×3×\sqrt {2}+\sqrt {2})²}= \sqrt {(3-\sqrt {2})^2}=3- \sqrt {2}$​
​$(2)$​同​$(1)$​得​$ \sqrt {11+6×\sqrt {2}}=3+ \sqrt {2}$​
又​$a$​,​$b$​,​$c $​是自然数,​$a+ \sqrt {2}\ \mathrm {b}+ \sqrt {3}\ \mathrm {c}= \sqrt {11+6×\sqrt {2}}$​
∴​$a+ \sqrt {2}b+ \sqrt {3}c=3+ \sqrt {2}$​,即​$a=3$​,​$b=1$​,​$c=0$​
∴​$2023a-2024b+2025c=2023×3-2024×1+2025×0=4045$​