电子课本网 第142页

第142页

信息发布者:
A
​$\sqrt {7}$​
​$-\frac {\sqrt {6}}{2}$​
​$\frac {3\sqrt {2}+2\sqrt {3}}{6}$​
解:∵​$ \frac {1}{\sqrt 3-\sqrt {2}} < x < \frac {2}{\sqrt 6-\sqrt {5}}$​
∴​$\frac {\sqrt {3}+\sqrt {2}}{(\sqrt {3}-\sqrt {2})(\sqrt {3}+\sqrt {2})}<x<\frac {2(\sqrt {6}+\sqrt {5})}{(\sqrt {6}-\sqrt {5})(\sqrt {6}+\sqrt {5})}$​,即​$ \sqrt {3}+ \sqrt {2}<x<2 \sqrt {6}+2 \sqrt {5}$​
又​$3²<(\sqrt {3}+\sqrt {2})²<4²$​,​$9²<(2 \sqrt {6}+2 \sqrt {5})²<10²$​,∴​$3<x<10$​
则整数​$x=4$​,​$5$​,​$6$​,​$7$​,​$8$​,​$9$​,其和为​$4+5+6+7+8+9=39$​
​$=\frac { \sqrt 2-\sqrt 3}{ \sqrt {6}(\sqrt 2-\sqrt 3) }$​
​$ =\frac {1}{\sqrt 6}$​
​$=\frac {\sqrt {6}}{6}$​
​$=\frac {(\sqrt x+\sqrt y)(\sqrt x-\sqrt y)}{\sqrt x-\sqrt y}$​
​$= \sqrt x+ \sqrt {y}$​
​$=\frac {(\sqrt 2+\sqrt 5-\sqrt 3)^2}{(\sqrt 2+\sqrt 5+\sqrt 3)(\sqrt 2+\sqrt 5-\sqrt 3)}$​
​$=\frac {(\sqrt 2+\sqrt 5-\sqrt 3)^2}{(\sqrt 2+\sqrt 5)^2-3}$​
​$=\frac {\sqrt {10}-\sqrt 6+\sqrt {15}+5}{\sqrt {10}+2}$​
​$=\frac {(\sqrt {10}-\sqrt 6-\sqrt {15}+5)(\sqrt {10}-2)}{(\sqrt {10}+2)(\sqrt {10}-2)}$​
​$=\frac {\sqrt {10}-\sqrt 6}2$​
​$=\frac {(\sqrt 2+\sqrt 3)+(\sqrt 3+\sqrt 5)}{(\sqrt 2+\sqrt 3)(\sqrt 3+\sqrt 5)}$​
​$=\frac {\sqrt 2+\sqrt 3}{(\sqrt 2+\sqrt 3)(\sqrt 3+\sqrt 5)}+\frac {\sqrt 3+\sqrt 5}{(\sqrt 2+\sqrt 3)(\sqrt 3+\sqrt 5)}$​
​$=\frac 1{\sqrt 3+\sqrt 5 }+\frac 1{\sqrt 2+\sqrt 3}$​
​$=\frac {\sqrt 5-\sqrt 3}2+\sqrt 3-\sqrt 2$​
​$=\frac {\sqrt 5+\sqrt 3-2\sqrt 2}2$​
解:∵​$\frac {1}{\sqrt {n+1}+\sqrt {n}}= \sqrt {n+1}- \sqrt {n}(n $​为正整数​$)$​
∴原式​$=[(\sqrt {2}-1)+(\sqrt {3}- \sqrt {2})+ \sqrt {4}-\sqrt {3})+···+(\sqrt {2025}- \sqrt {2024})]×(\sqrt {2025}+1)$​
​$=(\sqrt {2025}-1)×(\sqrt {2025}+1)$​
​$=2024$​
解:∵​$13+ \sqrt {48}=1+2×1×2 \sqrt {3}+(2 \sqrt {3})²= (1+2 \sqrt {3})²$​
∴​$5-(1+2 \sqrt {3})=4-2 \sqrt {3}=(\sqrt {3}-1)²$​
∴​$3+(\sqrt {3}-1)=2+ \sqrt {3}=\frac {4+2\sqrt {3}}{2}=\frac {\sqrt {3}+1)^2}{2}=(\frac {\sqrt 6+\sqrt 2}2)^2 $​
则原式​$=\frac {\frac {\sqrt 6+\sqrt 2}2}{\sqrt 6+\sqrt 2}= \frac {1}{2}$​