解:∵$\sqrt {2}>1$,$\sqrt {3}> \sqrt {2}$,$\sqrt {4}> \sqrt {3}···$,$\sqrt {101}> \sqrt {100}$
∴$x =\frac {2}{1+1}+\frac {2}{\sqrt 2+\sqrt {2}}+\frac {2}{\sqrt 3+\sqrt {3}}+···+\frac {2}{\sqrt {100}+\sqrt {100}}>$
$\frac {2}{1+\sqrt {2}}+\frac {2}{\sqrt 2+\sqrt {3}}+\frac {2}{\sqrt 3+\sqrt {4}}+···+\frac {2}{\sqrt {100}+\sqrt {101}}$
又$\frac {2}{1+\sqrt {2}}+\frac {2}{\sqrt 2+\sqrt {3}}+\frac {2}{\sqrt 3+\sqrt {4}}+···+\frac {2}{\sqrt {100}+\sqrt {101}}$
$=2×(\sqrt {2}-1+ \sqrt {3}- \sqrt {2}+ \sqrt {4}- \sqrt {3}+···+ \sqrt {101}- \sqrt {100})$
$=2(\sqrt {101}-1)$
且$2(\sqrt {101}-1)>18$
∴$x>2(\sqrt {101}-1)>18$,即$x>18$
同理,得$x=\frac {2}{1+1}+\frac {2}{\sqrt 2+\sqrt {2}}+\frac {2}{\sqrt 3+\sqrt {3}}+···+\frac {2}{\sqrt {100}+\sqrt {100}}<$
$\frac {2}{1+1}+\frac {2}{\sqrt 2+1}+\frac {2}{\sqrt 3+\sqrt {2}}+···+\frac {2}{\sqrt {100}+\sqrt {99}} $
又$\frac {2}{1+1}+\frac {2}{\sqrt 2+1}+\frac {2}{\sqrt 3+\sqrt {2}}+···+ \frac {2}{\sqrt {100}+\sqrt {99}}$
$=2×(\frac {1}{2}+ \sqrt {2}-1+ \sqrt {3}- \sqrt {2}+···+\sqrt {100}- \sqrt {99})$
$=2×(\frac {1}{2}+ \sqrt {100}-1)=19$
∴$x<19$
则$18<x<19$