电子课本网 第147页

第147页

信息发布者:
C
​$-2 \sqrt {1-x²}$​
解:由题意,得​$\begin {cases}1010-x≥0\\m +1≥0\\m -8≥0\\8-m≥0\end {cases}$​
解得​$x≤1010$​,​$m= 8$​
∴​$y=3$​,​$|x-1012|+(\sqrt {1010-x})²$​
​$=1012-x+1010-x=2022-2x$​
又​$|x-1012|+(\sqrt {1010-x})²=2024$​
∴​$2022-2x=2024$​
解得​$x=-1$​
∴​$xy=-3$​
B
​$\sqrt {505}$​
解:∵​$r≥4$​,∴​$\frac 1{\sqrt r}+\frac {1}{\sqrt {r+1}}<1$​
∴​$a=\frac {1}{r}-\frac {1}{r+1}$​
​$=( \frac 1{\sqrt {r}}+\frac {1}{\sqrt {r+1}}) (\frac 1{\sqrt {r}}- \frac {1}{\sqrt {r+1}})<\frac 1{ \sqrt {r}}-\frac {1}{\sqrt {r+1}}$​,即​$ a < b $​
又​$ c = \frac {1}{r(\sqrt r+\sqrt {r+1})}= \frac {r+1-r}{r(\sqrt {r}+\sqrt {r+1})} $​
​$=\frac {(\sqrt {r+1}-\sqrt r)(\sqrt {r+1}+\sqrt r)}{r(\sqrt r+\sqrt {r+1})}$​
​$=\frac {\sqrt {r+1}-\sqrt r}{r}$​
且​$ r= \sqrt {r} · \sqrt {r}< \sqrt {r} · \sqrt {r+1}$​
∴​$c> \frac {\sqrt {r+1}-\sqrt r}{\sqrt r · \sqrt {r+1}}$​
又​$ b =\frac 1{ \sqrt r}-\frac 1{\sqrt r+1}$​
​$=\frac {\sqrt {r+1}-\sqrt r}{\sqrt r · \sqrt {r+1}}$​
∴​$b<c$​
则​$a$​,​$b$​,​$c $​之间的大小关系为​$a<b<c$​
B
-1
解:∵​$\sqrt {2}>1$​,​$\sqrt {3}> \sqrt {2}$​,​$\sqrt {4}> \sqrt {3}···$​,​$\sqrt {101}> \sqrt {100}$​
∴​$x =\frac {2}{1+1}+\frac {2}{\sqrt 2+\sqrt {2}}+\frac {2}{\sqrt 3+\sqrt {3}}+···+\frac {2}{\sqrt {100}+\sqrt {100}}>$​
​$\frac {2}{1+\sqrt {2}}+\frac {2}{\sqrt 2+\sqrt {3}}+\frac {2}{\sqrt 3+\sqrt {4}}+···+\frac {2}{\sqrt {100}+\sqrt {101}}$​
又​$\frac {2}{1+\sqrt {2}}+\frac {2}{\sqrt 2+\sqrt {3}}+\frac {2}{\sqrt 3+\sqrt {4}}+···+\frac {2}{\sqrt {100}+\sqrt {101}}$​
​$=2×(\sqrt {2}-1+ \sqrt {3}- \sqrt {2}+ \sqrt {4}- \sqrt {3}+···+ \sqrt {101}- \sqrt {100})$​
​$=2(\sqrt {101}-1)$​
且​$2(\sqrt {101}-1)>18$​
∴​$x>2(\sqrt {101}-1)>18$​,即​$x>18$​
同理,得​$x=\frac {2}{1+1}+\frac {2}{\sqrt 2+\sqrt {2}}+\frac {2}{\sqrt 3+\sqrt {3}}+···+\frac {2}{\sqrt {100}+\sqrt {100}}<$​
​$\frac {2}{1+1}+\frac {2}{\sqrt 2+1}+\frac {2}{\sqrt 3+\sqrt {2}}+···+\frac {2}{\sqrt {100}+\sqrt {99}} $​
又​$\frac {2}{1+1}+\frac {2}{\sqrt 2+1}+\frac {2}{\sqrt 3+\sqrt {2}}+···+ \frac {2}{\sqrt {100}+\sqrt {99}}$​
​$=2×(\frac {1}{2}+ \sqrt {2}-1+ \sqrt {3}- \sqrt {2}+···+\sqrt {100}- \sqrt {99})$​
​$=2×(\frac {1}{2}+ \sqrt {100}-1)=19$​
∴​$x<19$​
则​$18<x<19$​