$解:(1)∵\frac {1}{n\sqrt {n+1}+(n+1)\sqrt {n}}$
$=\frac { \sqrt {n+1}- \sqrt {n}}{[n \sqrt {n+1}+(n+1) \sqrt {n}](\sqrt {n+1}- \sqrt {n})}$
$=\frac { \sqrt {n+1}-\sqrt n }{\sqrt {n(n+1)}}=\frac 1{ \sqrt {n}}- \frac {1}{n+1}$
$∴\frac {1}{\sqrt 2+2}+\frac {1}{2\sqrt {3}+3\sqrt {2}}+\frac {1}{3\sqrt {4}+4\sqrt {3}}+···+ \frac {1}{n\sqrt {n+1}+(n+1)\sqrt {n}} $
$=\frac 1{\sqrt {1}}- \frac {1}{\sqrt 2}+\frac {1}{\sqrt 2}-\frac {1}{\sqrt 3}+···+\frac 1{\sqrt n}-\frac 1{\sqrt {n+1}}$
$=1-\frac {1}{\sqrt {n+1}} $
$则原不等式可化为 \frac {7}{8}<1-\frac {1}{\sqrt {n+1}}<\frac {8}{9}$
$解得63<n<80$
$又n为正整数$
$∴n的最小值为64,n的最大值为79,$
$即n的最大值与最小值之差为15$
$(2)∵\sqrt x= \sqrt {a}+\frac {1}{\sqrt a}$
$∴x=a+\frac {1}{a}+2$
$∴x-2=a+\frac {1}{a},即(x-2)²=(a+\frac {1}{a})^2$
$∴x²-4x=a²+\frac {1}{a²}-2=(a-\frac {1}{a})²$
$∴原式=\frac {(x+3)(x-2)}{x} · \frac {x(x-2)}{x+3}-\frac {x-2+ \sqrt {x²-4x}}{ x-2- \sqrt {x²-4x}}$
$=(a+\frac {1}{a})^2-\frac {a+\frac {1}{a}+\sqrt {(a-\frac 1{a})^2}}{a-\frac {1}{a}-\sqrt {(a-\frac 1{a})^2}}$
$又0<a<1,∴a-\frac {1}{a}<0$
$∴原式=(a+\frac {1}{a})^2 -\frac {a+\frac {1}{a}+\frac {1}{a}-a}{a+\frac 1{a}+a-\frac 1{a}} $
$=a²+\frac {1}{a²}+2-\frac {1}{a²}$
$=a²+2$