电子课本网 第148页

第148页

信息发布者:
B
A
A
2
40
158
​$解:(1)∵\frac {1}{n\sqrt {n+1}+(n+1)\sqrt {n}}$​
​$=\frac { \sqrt {n+1}- \sqrt {n}}{[n \sqrt {n+1}+(n+1) \sqrt {n}](\sqrt {n+1}- \sqrt {n})}$​
​$=\frac { \sqrt {n+1}-\sqrt n }{\sqrt {n(n+1)}}=\frac 1{ \sqrt {n}}- \frac {1}{n+1}$​
​$∴\frac {1}{\sqrt 2+2}+\frac {1}{2\sqrt {3}+3\sqrt {2}}+\frac {1}{3\sqrt {4}+4\sqrt {3}}+···+ \frac {1}{n\sqrt {n+1}+(n+1)\sqrt {n}} $​
​$=\frac 1{\sqrt {1}}- \frac {1}{\sqrt 2}+\frac {1}{\sqrt 2}-\frac {1}{\sqrt 3}+···+\frac 1{\sqrt n}-\frac 1{\sqrt {n+1}}$​
​$=1-\frac {1}{\sqrt {n+1}} $​
​$则原不等式可化为 \frac {7}{8}<1-\frac {1}{\sqrt {n+1}}<\frac {8}{9}$​
​$解得63<n<80$​
​$又n为正整数$​
​$∴n的最小值为64,n的最大值为79,$​
​$即n的最大值与最小值之差为15$​
​$(2)∵\sqrt x= \sqrt {a}+\frac {1}{\sqrt a}$​
​$∴x=a+\frac {1}{a}+2$​
​$∴x-2=a+\frac {1}{a},即(x-2)²=(a+\frac {1}{a})^2$​
​$∴x²-4x=a²+\frac {1}{a²}-2=(a-\frac {1}{a})²$​
​$∴原式=\frac {(x+3)(x-2)}{x} · \frac {x(x-2)}{x+3}-\frac {x-2+ \sqrt {x²-4x}}{ x-2- \sqrt {x²-4x}}$​
​$=(a+\frac {1}{a})^2-\frac {a+\frac {1}{a}+\sqrt {(a-\frac 1{a})^2}}{a-\frac {1}{a}-\sqrt {(a-\frac 1{a})^2}}$​
​$又0<a<1,∴a-\frac {1}{a}<0$​
​$∴原式=(a+\frac {1}{a})^2 -\frac {a+\frac {1}{a}+\frac {1}{a}-a}{a+\frac 1{a}+a-\frac 1{a}} $​
​$=a²+\frac {1}{a²}+2-\frac {1}{a²}$​
​$=a²+2$​
解:∵​$(x+ \sqrt {x²+1})(y+ \sqrt {y²+1})= 1$​
∴​$x + \sqrt {x²+1} = \frac {1}{y+\sqrt {y²+1}}$​
​$ =\frac {\sqrt {y²+1}-y}{(y+\sqrt {y²+1})(\sqrt {y²+1}-y)}$​
​$= \sqrt {y²+1}-y$​
∴​$x+y= \sqrt {y²+1}- \sqrt {x²+1}$​
∴​$(x+y)²=(\sqrt {y²+1}- \sqrt {x²+1})²$​
即​$x^2+y²+2xy=x²+y²- 2 \sqrt {(x²+1)(y²+1)} + 2.$​
∴​$\sqrt {(x²+1)(y²+1)}=1-xy$​,即​$(x²+1)(y²+1)=(1-xy)²$​
∴​$x²y²+x²+y²+1=x²y²+1-2xy$​,即​$x²+y²+2xy=0$​
∴​$(x+y)²=0$​,则​$x+y=0$​
解:∵​$(x+ \sqrt {x²+1})(y+ \sqrt {y²+1})=1$​
∴​$(\sqrt {x²+1}-x)(x+ \sqrt {x²+1})(y+\sqrt {y²+1})=\sqrt {x²+1}-x$​
​$(x+\sqrt {x²+1})(y+\sqrt {y²+1})(\sqrt {y²+1}-y)= \sqrt {y²+1}-y$​
即​$y+\sqrt {y²+1}= \sqrt {x²+1} -x①$​
​$x+ \sqrt {x²+1}=\sqrt {y²+1}-y②$​
由①+②,得​$x+y+ \sqrt {x²+1}+\sqrt {y²+1}$​
​$= \sqrt {x²+1}+ \sqrt {y²+1}-(x+y)$​
即​$x+y=-(x+y)$​,则​$x+y=0$​