电子课本网 第40页

第40页

信息发布者:
解:∵​$1≤a≤2$​,∴​$0≤a-1≤1$​,即​$0≤ \sqrt {a-1}≤1$​
∴​$\sqrt {a-1}+1>0$​,​$\sqrt {a-1}-1≤0$​
∴​$m= \sqrt {a+2\sqrt {a-1}}+ \sqrt {a-2\sqrt {a-1}}$​
​$=\sqrt {a-1+2\sqrt {a-1}+1}+ \sqrt {a-1-2\sqrt {a-1}+1}$​
​$=\sqrt {a-1}+1+1- \sqrt {a-1}$​
​$=2$​
∴​$\sqrt {\mathrm {m^3}+1}=\sqrt {9}=3$​
解:原式​$= \frac {\sqrt {x²+y²}(x- \sqrt {x²+y²}) }{ (x+ \sqrt {x²+y²})(x- \sqrt {x²+y²})}+\frac { \sqrt {x²+y²}(x+\sqrt {x²+y²})}{(x-\sqrt {x^2+y^2})(x+\sqrt {x^2+y^2})} +\frac {2\sqrt {x²+y²}+xy}{y²}$​
​$=\frac {2x\sqrt {x²+y²}}{-y}+\frac {2x\sqrt {x²+y²}+xy}{y²}=\frac {x}y$​
又​$x=\sqrt {3} -\sqrt {2}$​,​$y=\sqrt {3}+\sqrt {2}$​
∴原式​$=\frac {\sqrt {3}-\sqrt 2}{\sqrt 3+\sqrt 2}=5- 2\sqrt {6}$​
​$解:在Rt△ABC中,∠ACB=90°,AC=3,BC= 3\sqrt {2}$​
​$∴S_{△ABC}=\frac {1}{2}AC · BC=\frac {9\sqrt {2}}{2},AB=\sqrt {AC²+BC²}=3 \sqrt {3}$​
​$∵D是AB的中点$​
​$∴CD=\frac {1}{2}\ \mathrm {AB}=\frac {3\sqrt {3}}{2},S_{△BCD}=\frac {1}{2}\ \mathrm {S}_{△ABC}=\frac {9\sqrt {2}}{4}$​
​$又BE⊥CD$​
​$∴S_{△BCD}=\frac {1}{2}CD · BE $​
​$即BE=\frac {2S_{△BCD}}{CD}=\frac {2×\frac {9\sqrt {2}}{4}}{\frac {3\sqrt 3}2} =\sqrt {6}$​