解:∵$1≤a≤2$,∴$0≤a-1≤1$,即$0≤ \sqrt {a-1}≤1$
∴$\sqrt {a-1}+1>0$,$\sqrt {a-1}-1≤0$
∴$m= \sqrt {a+2\sqrt {a-1}}+ \sqrt {a-2\sqrt {a-1}}$
$=\sqrt {a-1+2\sqrt {a-1}+1}+ \sqrt {a-1-2\sqrt {a-1}+1}$
$=\sqrt {a-1}+1+1- \sqrt {a-1}$
$=2$
∴$\sqrt {\mathrm {m^3}+1}=\sqrt {9}=3$