解:$(2)S_{n+1}-S_n=6n-3+2\sqrt {3}$,证明如下:
当$a= 1$,$b=3$时,$a+n\sqrt b=1+n \sqrt {3}$
∴$S_{n+1}=(1+n \sqrt {3})²$,$S_n=[1+(n-1) \sqrt {3}]²$
∴$S_{n+1}-S_n=(1+n \sqrt {3})²-[1+(n-1)\sqrt {3}]²=\sqrt {3}×[2+(2n-1)\sqrt {3}]=6n-3+2\sqrt {3}$
$(3)$∵$t_{1}=S_{2}-S_{1}$,$t_{2}=S_{3}-S_{2}$,$t_{3}=S_{4}- S_{3}······$
∴$T=t_{1}+t_{2}+t_{3}+···+t_{50}=S_{2}-S_{1}+S_{3}-S_{2}+S_{4}-S_{3}+···+S_{51}-S_{50}=S_{51}-S_{1}$
由$(2)$得$S_n=[1+(n-1)\sqrt {3}]²$,则$S_{51}=(1+50\sqrt {3})²$,$S_{1}=1$
∴$T=S_{51}-S_{1}=(1+50\sqrt {3})²-1=7500+100\sqrt {3}$