$解:过点B作BD⊥EF{于} 点D,$
$过点A作AC⊥BD交BD于点C,$
$交OM于点N,$
$因为OM⊥EF,$
$所以OM//BC,.$
$所以AN⊥OM,$
$所以四边形MDCN为矩形,$
$所以MN= CD,$
$因为AB=6,AO:OB= 2:1,$
$所以AO=\frac {2}{3}AB=4,$
$在Rt△ANO中,AO=4,∠AOM= 45° ,$
$所以ON=OA.cos_{45}° =4×\frac {\sqrt{2}}{2}= 2\sqrt{2} $
$所以CD= MN= OM- ON=3- 2\sqrt{2},$
$在Rt△ACB中,AB=6,∠AOM = 45°$
$所以BC=ABcos_{45}°=6×\frac {\sqrt{2}}{2}=3\sqrt{2}$
$所以BD=BC+CD=3\sqrt{2}+3-2\sqrt{2}=3+\sqrt{2}(米)$