$解:(1) ∵ 二次函数y=a(x-1)^2+h的图像与x轴交于点A(-2,0),$
$与y轴交于点C(0,4)$
$∴\begin{cases}{a(-2-1)^2+h=0}\\{a(0-1)^2+h=4}\end{cases},解得 \begin{cases}{a=-\dfrac 12}\\{h=\dfrac 92}\end{cases}$
$∴ 该二次函数的表达式为y=-\frac {1}{2} (x-1)^2+\frac {9}{2}=- \frac {1}{2} x^2+x+4 $
$(2)令y=0,则- \frac {1}{2} x^2+x+4=0$
$解得x_{1}=-2,x_{2}=4$
$∴ 点B的坐标为(4,0)$
$∵ E是BC的中点$
$∴点E的坐标为(2,2)$
$设直线AE相应的函数表达式为y=mx+n$
$则\begin{cases}{-2m+n=0}\\{2m+n=2}\end{cases}, 解得\begin{cases}{m=\dfrac {1}{2}}\\{n=1}\end{cases}$
$∴ 直线AE相应的函数表达式为y=\frac {1}{2} x+1$
$联立方程组 \begin{cases}{y=\dfrac {1}{2} x+1}\\{y=-\dfrac 12x^2+x+4}\end{cases},解得\begin{cases}{x=3}\\{y=\dfrac 52}\end{cases},或\begin{cases}{x=-2}\\{y=0}\end{cases}$
$∴点D的坐标为(3,\frac {5}{2} )$