$解:由题意可知,An,Bn是AC、BC中最靠近点C的{2}^{n}等分点$
$则{S}_{四边形AnABBn}=\frac {3}{4}+\frac {3}{4²}+\frac {3}{4³}+···+\frac {3}{{4}^{n}}$
$∵An,Bn是AC、BC中最靠近点C的{2}^{n}等分点$
$∴△ABC∽△AnBnC,相似比为{2}^{n}:1$
$∴S_{△ABC} : S_{△AnBnC}={4}^{n}:1$
$∴S_{△AnBnC} =\frac {1}{{4}^{n}}S_{△ABC} $
$又∵S_{四边形AnABB}= S_{△ABC}- S_{△AnBnC}$
$∴S_{四边形AnABBn}=1-\frac {1}{{4}^{n}}$
$∴\frac {3}{4}+\frac {3}{4²}+\frac {3}{4³}+···+\frac {3}{{4}^{n}}=1-\frac {1}{{4}^{n}}$