$解:过点C作CE⊥AB于E,过点B作BF⊥CD于F$
$∵在Rt△BFD中,∠DBF=30°$
$∴sin∠DBF= \frac {DF}{BD}=\frac {1}{2}$
$cos∠DBF= \frac {BF}{BD}=\frac {\sqrt{3}}{2}$
$∵BD=6$
$∴DF=3,BF= 3\sqrt{3}$
$∵AB//CD,CE⊥AB,BF⊥CD$
$∴四边形BFCE为矩形$
$∴BF=CE= 3\sqrt{3},CF=BE=CD-DF=1$
$∵在Rt△ACE中,∠ACE=45°$
$∴AE=CE= 3\sqrt{3}$
$∴AB=AE+BE=3 \sqrt{3}+1$
$即铁塔AB的高为(3 \sqrt{3}+1)米$