$解: (1)过点F 作FH⊥CD交于点H$
$∵∠CDF=30°$
$∴FH=DF×sin 30°=15\ \mathrm {cm},$
$DH=cos 30°×DF=15\sqrt{3}\ \mathrm {cm}$
$∵∠DCF=45°$
$∴CH=FH= 15\ \mathrm {cm}$
$∴CD= CH+ DH= (15 + 15\sqrt{3})\ \mathrm {cm}$
$∵CE : CD= 1:3$
$∴CE= (5+5\sqrt{3})\ \mathrm {cm}$
$∴DE= CE+CD= (20+20\sqrt{3})\ \mathrm {cm}$
$∵DE= BC= AB$
$∴AC= 2DE= (40 + 40\sqrt{3})\ \mathrm {cm}$
$(2)过点A作AG⊥DE于点G$
$∵∠ACD=45°$
$∴AG= sin 45°×AC= 20\sqrt{2}+20\sqrt{6}≈77\ \mathrm {cm}$
$答:拉杆端点A到水平滑杆DE的距离是77\ \mathrm {cm}。$