$解:延长CD,交AH于点E$
$根据题意得CE⊥AH$
$设DE=xm,则CE=(x+2)m$
$在Rt△AEC和Rt△BED中$
$tan 37°=\frac {CE}{AE},tan 60°=\frac {DE}{BE},$
$∴AE=\frac {CE}{tan 37°},BE=\frac {DE}{tan 60°}$
$∵AE-BE=AB$
$∴\frac {CE}{tan 37°}-\frac {DE}{tan 60°}=10,$
$即\frac {x+2}{0.75}-\frac {x}{\sqrt{3}}=10$
$解得x≈9.7$
$∴DE=9.7m$
$∴GH=CE=CD+DE =2+9.7=11.7(\mathrm {m})$