$证明:(1)连接DE、DF,如图①$
$当t=2时,DH=AH=4,则H是AD的中点$
$∵EF⊥AD$
$∴EF 为AD的垂直平分线$
$∴AE= DE,AF= DF$
$∵AB= AC,AD⊥BC,∴∠B=∠C$
$∴EF//BC$
$∴∠AEF=∠B,∠AFE=∠C$
$∴∠AEF=∠AFE$
$∴AE= AF$
$∴AE=AF= DE= DF$
$∴四边形AEDF 为菱形$
$(2)如图②由(1)知EF//BC$
$∴△AEF∽△ABC$
$∴\frac {EF}{BC}=\frac {AH}{AD},即\frac {EF}{10}=\frac {8-2t}{8}$
$解得EF= 10-\frac {5t}{2}$
$S_{△PEF}=\frac {1}{2}EF×DH=\frac {1}{2}(10-\frac {5}{2}t)×2t=-\frac {5}{2}t²+10t=-\frac {5}{2}(t-2)²+10$
$∴当t= 2s 时,S_{△PEF} 取最大值,最大值为10,此时BP=3t=6(\ \mathrm {cm})$
$(3)存在,理由如下:$
$①若点E为直角顶点,如图③$
$此时PE//AD,PE= DH= 2t,BP= 3t$
$∵PE//AD$
$∴\frac {PE}{AD}=\frac {BP}{BD},即\frac {2t}{8}=\frac {2t}{5}$
此比例式不成立,故此种情形不存在
$②若点F 为直角项点,如图④$
$此时PE//AD,PF=DH= 2t,BP= 3t,CP= 10- 3t$
$∵PF//AD$
$∴\frac {PF}{AD}=\frac {CP}{CD},即\frac {2t}{8}=\frac {10-3t}{5}$
$解得t=\frac {40}{17}$
$③若点P 为直角顶点,如图⑤$
$过点E作EM⊥BC,垂足为M,过点F 作FN⊥BC,垂足为N$
$则EM = FN = DH= 2t,EM//FN//AD$
$∵EM//AD$
$∴\frac {EM}{AD}=\frac {BM}{BD},即\frac {2t}{8}=\frac {BM}{5}$
$解得BM=\frac {5}{4}t$
$∴PM=BP-BM=3t-\frac {5}{4}t=\frac {7}{4}t$
$在Rt△EMP 中,由勾股定理,$
$得PE²=EM²+PM²= (2t)²+(\frac {7}{4}t)²=\frac {113}{16}t²$
$∵FN//AD$
$∴\frac {FN}{AD}=\frac {CN}{CD},即\frac {2t}{8}=\frac {CN}{5}$
$解得CN=\frac {5}{4}t$
$∴PN= BC- BP- CN= 10- 3t-\frac {5}{4}t= 10-\frac {17}{4}t$
$在Rt△FNP 中,由勾股定理得PF²=FN²+PN²= (2t)²+(10-\frac {17}{4}t)²=\frac {353}{16}t²-85t+100$
$在Rt△PEF 中,由勾股定理,得EF²=PE²+PF²$
$即(10-\frac {5}{2}t)²=(\frac {113}{16}t²)+(\frac {353}{16}t²-85t+100)$
$化简得\frac {233}{8}t²-35t=0$
$解得t= \frac {280}{233}或t=0 (舍去)$
$∴t=\frac {280}{233}$
$综上所述,当t=\frac {40}{17}s 或t=\frac {280}{233}s 时,△PEF 为直角三角形$