$解:作AH⊥BC于H,$
$则AH//DE,DG//BC$
$所以\frac {DE}{AH}=\frac {BD}{AB}=1-\frac {AD}{AB}=1-\frac {DG}{BC}$
$BC=\sqrt{12²+16²}=20\ \mathrm {cm},AH=\frac {12×16}{20}=\frac {48}{5}\ \mathrm {cm}$
$设DE= 3x\ \mathrm {cm},$
$则DG= EF = 5x\ \mathrm {cm}$
$所以\frac {3x}{\frac {48}{5}}=1-\frac {5x}{20}$
$解得x=\frac {16}{9}$
$所以矩形DEFG的周长= 2(DE+ DG)= 16x= \frac {256}{9}\ \mathrm {cm} .$