电子课本网 第77页

第77页

信息发布者:
3
5或10
2(x+1)或2(x²-1)
解:​$\frac {2}{9-3a}=-\frac {2}{3(a-3)}=-\frac {2(a+3)}{3(a+3)(a-3)}$​
​$\frac {a-1}{a^2-9}=\frac {3(a-1)}{3(a+3)(a-3)}$​
解:​$\frac {x}{2(x+1)}=\frac {x^2(x-1)}{2x(x+1)(x-1)}$​,​$\frac {1}{x^2-x}=\frac {2(x+1)}{2x(x+1)(x-1)}$​
解:​$\frac {1}{a^2-4a+4}=\frac {1}{(a-2)^2}=\frac {2(a+2)}{2(a+2)(a-2)^2}$​
​$\frac {a}{a^2-4}=\frac {a}{(a+2)(a-2)}=\frac {2a(a-2)}{2(a+2)(a-2)^2}$​
​$\frac {1}{2a+4}=\frac {1}{2(a+2)}=\frac {(a-2)^2}{2(a+2)(a-2)^2}$​
解:​$\frac {1}{8x-4y}=-\frac {y+2x}{4(y+2x)(y-2x)}$​
​$\frac {1}{4y-8x}=\frac {y+2x}{4(y+2x)(y-2x)}$​
​$\frac {3x}{y^2-4x^2} =\frac {12x}{4(y+2x)(y-2x)}$​
解:两个分式分母的公因式​$a=x-1$​,
最简公分母​$b=3(x+1)(x-1)$​
∴​$ \frac {b}{a}=\frac {3(x+1)(x-1)}{x-1}=3(x+1)=3$​,解得​$x=0$​
∴​$\frac {1}{3x^2-3}=-\frac {1}{3}$​
​$\frac {2}{x-1}=-2$​
解:例如,取​$a=1$​,​$b=2$​,​$c=3$​,​$d=6$​
有​$\frac {1}{2}=\frac {3}{6}$​
则​$(1)\frac {1}{3}=\frac {2}{6}$​;​$(2)\frac {1+2}{2}=\frac {3+6}{6}=\frac {3}{2}$​;​$(3)\frac {1+2}{1-2}=\frac {3+6}{3-6}=-3$​
观察发现各组中的两个分式相等,选择第​$(2)$​组进行说明
∵​$a$​、​$b$​、​$c$​、​$d$​都不等于​$0$​,且​$\frac {a}{b}=\frac {c}{d}$​
∴​$\frac {a}{b}+1=\frac {c}{d}+1$​,即​$\frac {a+b}{b}=\frac {c+d}{d}$​