$解:(1)将点A(3,0)代入得-3^2+2×3+m=0$
$∴m=3$
$(2)∵二次函数y=-x^2+2x+3的对称轴为直线x=1$
$∴另外一个交点为B(-1,0)$
$(3)以AB为底,若S_{△ABD}=S_{△ABC}$
$则点C、D到直线AB的距离相等$
$若设D(x,y),则y=±3$
$当y=3时,-x^2+2x+3=3,解得x_{1}=0、x_{2}=2$
$∴D_{1}(2,3)$
$当y=-3时,-x^2+2x+3=-3,解得x_{3}=1+\sqrt{7}、x_{4}=1-\sqrt{7}$
$∴D_{2}(1+\sqrt{7},-3)、D_{3}(1-\sqrt{7},-3)$
$综上所述,点D的坐标为D_{1}(2,3)、D_{2}(1+ \sqrt{7},-3)、D_{3}(1- \sqrt{7},-3)$