$解:(1)①tan A=\frac {BC}{AC}=\frac 34,tan B=\frac {AC}{BC}=\frac 43$
$②在Rt△ABC中,∵AB=13,AC=5$
$∴BC=\sqrt {AB^2-AC^2}=12$
$∴tan A=\frac {BC}{AC}=\frac {12}{5},tan B=\frac {AC}{BC}=\frac {5}{12}$
$③在Rt△ABC中,∵AB=25,AC=24$
$∴BC=\sqrt {AB^2-AC^2}=7$
$∴tan A=\frac {BC}{AC}=\frac {7}{24},tan B=\frac {AC}{BC}=\frac {24}{7}$
$(2)当∠A+∠B=90°是,tan A · tan B=1,即互余两角的正切互为倒数$