$解:(1)tan A=\frac {a}b=\frac {15}{9}=\frac {5}{3},tan B=\frac b{a}=\frac {9}{15}=\frac {3}{5}$
$(2)不妨令a=2,则c=3$
$由勾股定理可得b=\sqrt {c^2-a^2}=\sqrt 5$
$∴tan A=\frac {a}b=\frac 2{\sqrt 5}=\frac {2\sqrt 5}5,tan B=\frac b{a}=\frac {\sqrt 5}2$
$(3)不妨令b=1,则c=4$
$由勾股定理可得a=\sqrt {c^2-b^2}=\sqrt {15}$
$∴tan A=\frac {a}b=\sqrt {15},tan B=\frac b{a}=\frac 1{\sqrt {15}}=\frac {\sqrt {15}}{15}$