$解:(1)在Rt△ABC中,∵BC=6,AB=10$
$∴AC=\sqrt {AB^2-BC^2}=8$
$∴tan A=\frac {BC}{AC}=\frac 34$
$∵CD是斜边上的高$
$∴∠CDB=∠ACB=90°$
$∴∠B+∠BCD=∠ACD+∠BCD=90°$
$∴∠B=∠ACD$
$∴tan ∠ACD=tan B=\frac {AC}{BC}=\frac 43$
$(2)不妨设AD=9x,则BD=4x$
$∵∠ACD=∠B$
$∴90°-∠ACD=90°-∠B,即∠BCD=∠A$
$∴tan ∠BCD=tan A,即\frac {BD}{CD}=\frac {CD}{AD}$
$∴CD^2=BD · AD$
$∵AD=9x,BD=4x$
$∴CD=6x$
$∴tan ∠BCD=\frac {BD}{CD}=\frac {4x}{6x}=\frac 23$