$解:过点D作DE⊥AB,垂足为E,过点C作CF⊥DE,垂足为F$
$∵∠DCB=120°,CB⊥AB,OD⊥CD$
$∴∠DOB=360°-∠DCB-∠CBO-∠ODC=360°-120°-90°-90°=60°,即∠DCF=30°$
$∴CF=CD · cos_{30}°=2× \frac {\sqrt{3}}{2}=\sqrt 3,DF=\frac {1}{2}\ \mathrm {CD}=1$
$∴CF=BE=\sqrt{3} $
$∴OE=OB-BE=\frac {1}{2}\ \mathrm {AB}-BE=11-\sqrt{3} $
$∴DE= tan 60° · OE =\sqrt{3} (11- \sqrt{3} )=11 \sqrt{3} -3$
$∴BC=DE-DF=11 \sqrt{3} -3-1=11 \sqrt{3} -4$