$解:(2)w_{线上}=x(y-20)-62500=-\frac {1}{100} x^2+130x-62500,$
$w_{线下}=- \frac {1}{100} x^2+(150-a)x$
$(3) 当x=-\frac { 130}{2×(-\frac {1}{100})} =6500时,w_{线上}最大$
$由\frac { 0-(150-a)^2}{ 4×(- \frac {1}{100} )}=\frac {4×(- \frac {1}{100} )×(-62500)-130^2}{4×(- \frac {1}{100} )}$
$解得a_{1}=30,a_{2}=270(不合题意,舍去)$
$∴a=30 $
$(4) 当x=5000时,w_{线上}=337500,w_{线下}=-5000a+500000$
$若w_{线上}\lt w_{线下},则a\lt 32.5;$
$若w_{线上}=w_{线下},则a=32.5;$
$若w_{线上}\gt w_{线下},则a\gt 32.5$
$∴当10≤a\lt 32.5时,选择在线下销售;$
$当a=32.5时,在线下和线上销售都一样;$
$当32.5\lt a≤40时,选择在线上销售$