$解:(2)在Rt△ACB中,由勾股定理得:$
$AB=\sqrt {AC^2+BC^2}=\sqrt {3^2+2^2}=\sqrt {13} $
$∴sin∠ABC=\frac {AC}{AB}=\frac {3\sqrt {13}}{13},$
$cos∠ABC=\frac {BC}{AB}=\frac {2\sqrt {13}}{13}$
$在Rt△BCD中,∵BC=2$
$∴BD=BC · cos∠ABC=\frac {4\sqrt {13}}{13},$
$CD=BC · sin∠ABC=\frac {6\sqrt {13}}{13}$
$∴S_{△CBD}=\frac 12BD×CD=\frac {12}{13}$
$设S_{△FDB}=x$
$∵△FDB∽△FCD$
$∴\frac {S_{△FDB}}{S_{△FCD}}=(\frac {BD}{CD})^2=\frac 49$
$∴S_{△FCD}=\frac 94x$
$∴\frac 94x-x=\frac {12}{13}$
$解得x=\frac {48}{65}$
$∴S_{△FDB}=\frac {48}{65}$