电子课本网 第37页

第37页

信息发布者:
$解:∵​△ABC∽△A'B'C'​$
$∴​\frac {AB}{A'B'}=\frac {AC}{A'C'}=\frac {BC}{B'C'}=\frac {AB+BC+AC}{A'C'+B'C'+A'C'}=\frac {60}{72}​$
$又∵​AB=15\ \mathrm {cm},​​B'C'=24\ \mathrm {cm}​$
$∴​A'B'=18\ \mathrm {cm},​​BC=20\ \mathrm {cm}​$
$解:∵​DE//BC​$
$∴​∠DEB=∠EBC,​​∠EDC=∠DCB​$
$∴​△DOE∽△COB​$
$由​△DOE​与​△COB​的面积比为​4:​​9​$
$可得​△DOE​与​△COB​的相似比为​2:​​3​$
$∴​\frac {DE}{BC}=\frac 23​$
$∵​DE//BC​$
$∴​\frac {AE}{AC}=\frac {DE}{BC}=\frac 23​$
$解:​(1)△ABC​的周长​=20×\frac 3{3+2}=12(\mathrm {cm})​$
$​△A'B'C'​的周长​=20×\frac 2{3+2}=8(\mathrm {cm})​$
$​(2)​∵​△ABC​与​△A'B'C'​的相似比为​\frac 32​$
$∴面积比为​\frac 94​$
$∴​S_{△ABC}=5÷\frac {9-4}9=9(\mathrm {cm^2}),​​S_{△A'B'C'}=5÷\frac {9-4}4=4(\mathrm {cm^2})​$