$解:∵DG//AB、QH//BC $
$∴△PKQ∽△DPE$
$∴\frac {S_{△KQP}}{S_{△PDE}}=(\frac {KP}{PE})^2=\frac 4{16}$
$∴\frac {KP}{PE}=\frac 12 $
$∴\frac {KP}{KE}=\frac 13$
$又∵△KQP∽△KBE$
$∴\frac {S_{△KQP}}{S_{△KBE}}=(\frac {KP}{KE})^2=(\frac 13)^2=\frac 19$
$∴\frac {4}{S_{△KBE}}=\frac 19 $
$∴S_{△KBE}=36$
$∴S_{四边形BDPQ}=S_{△KBE}-S_{△KQP}-S_{△PDE}=36-4-16=16$
$同理可求得S_{四边形CEPH}=24,S_{四边形AKPG}=12$
$∴S_{△ABC}=16+12+24+16+9+4=81$