电子课本网 第52页

第52页

信息发布者:
$证明:∵​△ABC∽△A'B'C'​$
$又​AD、​​BE​是​△ABC​的高,​A'D'、​​B'E'​是​△A'B'C'​的高$
$∴​\frac {AD}{A'D'}=\frac {AB}{A'B'},​​\frac {BE}{B'E'}=\frac {AB}{A'B'}​$
$∴​\frac {AD}{A'D'}=\frac {BE}{B'E'}​$

$解:连接​AP​并延长交​BC​于点​D​$
$∵点​P​为​△ABC​的重心$
$∴​\frac {AP}{AD}=\frac 23$
$​∵​EF//BC​$
$∴​△AEP∽△ABD,​​△AEF∽△ABC$
$​∴​\frac {AE}{AB}=\frac {AP}{AD}=\frac 23​$
$∴​\frac {EF}{BC}=\frac {AE}{AB}=\frac 23$
$解:∵​DG//AB、​​QH//BC ​$
$∴​△PKQ∽△DPE​$
$∴​\frac {S_{△KQP}}{S_{△PDE}}=(\frac {KP}{PE})^2=\frac 4{16}​$
$∴​\frac {KP}{PE}=\frac 12 ​$
$∴​\frac {KP}{KE}=\frac 13​$
$又∵​△KQP∽△KBE​$
$∴​\frac {S_{△KQP}}{S_{△KBE}}=(\frac {KP}{KE})^2=(\frac 13)^2=\frac 19​$
$∴​\frac {4}{S_{△KBE}}=\frac 19 ​$
$∴​S_{△KBE}=36​$
$∴​S_{四边形BDPQ}=S_{△KBE}-S_{△KQP}-S_{△PDE}=36-4-16=16​$
$同理可求得​S_{四边形CEPH}=24,​​S_{四边形AKPG}=12​$
$∴​S_{△ABC}=16+12+24+16+9+4=81​$
$证明:如图四边形​ABCD∽​四边形​A'B'C'D'​$
$设相似比为​k,​则​\frac {AD}{A'D'}=\frac {DC}{D'C'}=k,​​∠D=∠D'​$
$∴​△ADC∽△A'D'C'​$
$∴​\frac {AC}{A'C'}=\frac {AD}{A'D'}=k​$
命题得证
解:它们对应顶点相连形成的直线交于一点