$解:\frac {x+1}{x+2}-\frac {x+2}{x+3}=\frac {x+5}{x+6}-\frac {x+6}{x+7}$
$ \frac {(x+1)(x+3)-(x+2)^2}{(x+2)(x+3)}=\frac {(x+5)(x+7)-(x+6)^2}{(x+6)(x+7)}$
$ \frac {-1}{(x+2)(x+3)}=\frac {-1}{(x+6)(x+7)}$
$ ∴(x+2)(x+3)=(x+6)(x+7),化简得5x+6=13x+42$
$ x=-\frac 92$
$ 经检验,x=-\frac 92是原方程式的解$