$解:(2)存在,过B'作MN//AB,交AD,BC于点M,N,$
$过E作EH//AD,交MN于H,$
$∵AD//BC,MN//AB,$
$∴四边形ABNM是平行四边形,$
$又∵∠A=90°,$
$∴四边形ABNM是矩形,$
$同理可得:四边形AEHM是矩形.$
$①如图1,若点B'在AD下方,则B'M=3\ \mathrm {cm},B'N=3\ \mathrm {cm},$
$∵MH=AE=1(\mathrm {cm}),$
$∴B'H=2(\mathrm {cm}),$
$由折叠可得,EB'=EB=5(\mathrm {cm}),$
$∴Rt△EB'H中,EH=\sqrt {5²-2²}=\sqrt {21}(\mathrm {cm}),$
$∴BN=AM=EH=\sqrt {21}(\mathrm {cm}),$
$∵BP=t,$
$∴PB'=t,PN=\sqrt {21}-t,$
$∵Rt△PB'N中,B'P²=PN²+B'N²,$
$∴t²=(\sqrt {21}-t)²+3²,$
$解得t=\frac {5\sqrt {21}}{7}.$
$②如图2,若点B'在AD上方,则B'M=3\ \mathrm {cm},B'N=9\ \mathrm {cm},$
$同理可得,EH=3\ \mathrm {cm},$
$∵BP=t,∴B'P=t,PN=t﹣3,$
$∵Rt△PB'N中,B'P²=PN²+B'N²,$
$∴t²=(t-3)²+9²,$
$解得t=15.$
$综上所述,t的值为\frac {5\sqrt {21}}{7}秒或15秒.$