电子课本网 第85页

第85页

信息发布者:
解:∵​$x^2+x-1=0,$​∴​$x^2=-(x-1)$​
∴​$\frac {x^4+(x-1)^2-1}{x(x-1)}=\frac {x^4+x^2-2x+1-1}{-x^3}=\frac {x^3+x-2}{-x^2}$​
​$=\frac {x(x^2+1)-2}{-x^2}=\frac {x(-x+1+1)-2}{-x^2}=\frac {-x^2+2x-2}{-x^2}$​
​$=\frac {-x^2+2(x-1)}{-x^2}=\frac {-x^2-2x^2}{-x^2}=3$​
解:​$(1)①×4-②$​得​$21y-14z=0,$​∴​$y=\frac 23z$​
将​$y=\frac 23z$​代入​$①$​得​$x+4×\frac 23z-3z=0$​
∴​$x=\frac 13z$​
​$(2)$​把​$x=\frac 13z,$​​$y=\frac 23z$​代入​$\frac {3x^2+2xy+z^2}{x^2+y^2}$​
得原式​$=\frac {3×\frac 19z^2+2×\frac 13z×\frac 23z+z^2}{\frac 19z^2+\frac 49z^2}=\frac {16}5$​
解:​$(1)$​原式​$=5×\frac {a-b}{a+b}-3×\frac {a+b}{a-b}$​
∵​$\frac {a-b}{a+b}=3,$​∴​$\frac {a+b}{a-b}=\frac 13$​
∴原式​$=5×3-3×\frac 13=15-1=14$​
​$(2)$​原式​$=\frac {1}{x+3+\frac {1}{x}}$​
当​$x+\frac {1}{x}=4$​时,原式​$=\frac {1}{4+3}=\frac {1}{7}$​
解:由题意,​$ \frac {a}{x^2-yz}=\frac {b}{y^2-xz}=\frac {c}{z^2-xy}=k$​
∴​$a=k(x^2-yz),$​​$b=k(y^2-xz),$​​$c=k(z^2-xy)$​
∴原式​$=\frac {kx(x^2-yz)+ky(y^2-xz)+kz(z^2-xy)}{x+y+z}=\frac {k(x^3+y^3+z^3-3xyz)}{x+y+z}$​
​$=\frac {k[(x+y)^3+z^3-3xy(x+y)-3xyz]}{x+y+z}=\frac {k(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{x+y+z}$​
​$=k(x^2-yz)+k(y^2-xz)+k(z^2-xy)$​
​$=a+b+c=2025$​