解:由题意,$ \frac {a}{x^2-yz}=\frac {b}{y^2-xz}=\frac {c}{z^2-xy}=k$
∴$a=k(x^2-yz),$$b=k(y^2-xz),$$c=k(z^2-xy)$
∴原式$=\frac {kx(x^2-yz)+ky(y^2-xz)+kz(z^2-xy)}{x+y+z}=\frac {k(x^3+y^3+z^3-3xyz)}{x+y+z}$
$=\frac {k[(x+y)^3+z^3-3xy(x+y)-3xyz]}{x+y+z}=\frac {k(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{x+y+z}$
$=k(x^2-yz)+k(y^2-xz)+k(z^2-xy)$
$=a+b+c=2025$