电子课本网 第84页

第84页

信息发布者:
​$=2-\frac {3x+y}{x-2y}· \frac {(x+2y)(x-2y)}{(3x+y)^2}$​
​$=2-\frac {x+2y}{3x+y}$​
​$=\frac {2(3x+y)-(x+2y)}{3x+y}$​
​$=\frac {6x+2y-x-2y}{3x+y}$​
​$=\frac {5x}{3x+y}$​
​$=\frac {x+2}{(x+3)(x-3)}÷\frac {x+3-1}{x+3}$​
​$=\frac {x+2}{(x+3)(x-3)}÷\frac {x+2}{x+3}$​
​$=\frac {x+2}{(x+3)(x-3)}· \frac {x+3}{x+2}$​
​$=\frac 1{x-3}$​
​$=\frac {(x+y)(x-y)}x· \frac {y}{x+y}-y$​
​$=\frac {y(x-y)}x-\frac {xy}{x}$​
​$=-\frac {y^2}x$​
​$=(\frac {x^2-4x+3}{x-3}+\frac 1{x-3})· [\frac {(x-1)^2}{(x-1)(x-2)}-\frac 2{x-2}]$​
​$=\frac {(x-2)^2}{x-3}· (\frac {x-1}{x-2}-\frac 2{x-2})$​
​$=\frac {(x-2)^2}{x-3}· \frac {x-3}{x-2}$​
​$=x-2$​
解:原式​$=\frac {(x-2)(x+2)+3}{x+2}· \frac {x+2}{(x+1)^2}=\frac {x^2-1}{x+2}\ \mathrm {·} \frac {x+2}{(x+1)^2}=\frac {(x+1)(x-1)}{x+2}· \frac {x+2}{(x+1)^2}=\frac {x-1}{x+1}$​
当​$x=3$​时,​$A=\frac {3-1}{3+1}=\frac 12$​
解:原式​$=[\frac 3{a+1}-\frac {(a-1)(a+1)}{a+1}] · \frac {a+1}{(a-2)^2}= \frac {3-a^2+1}{a+1}\ \mathrm {·} \frac {a+1}{(a-2)^2} =\frac {4-a^2}{(a-2)^2}=\frac {(2-a)(2+a)}{(2-a)^2}=\frac {a+2}{2-a}$​
由分式有意义的条件可知​$a≠-1,$​​$a≠2$​
∴故​$a$​可取​$a=0,$​ ∴原式​$=\frac 22=1$​
解:原式​$=\frac {x^2-(x-1)^2}{x-1}· \frac {1-x}{(2x-1)^2}=\frac {2x-1}{x-1}· \frac {1-x}{(2x-1)^2}=-\frac 1{2x-1}$​
​$ $​由​$x^2+2x-3=0,$​解得​$x_{1}=-3,$​​$x_{2}=1$​
 ∵​$x≠1,$​ ∴当​$x=-3$​时,原式​$=-\frac 1{2×(-3)-1}=\frac 17$​