解:$(1)①$∵$m=2,$$a=4$
∴点$A(2,$$0),$$B(-2,$$0),$$y_{1}=\frac 2x,$$y_{2}=-\frac 2x$
∴点$E(2,$$1),$$G(\frac 12,$$4),$$H(-\frac 12,$$4)$
∵一次函数$y_{2}$的图像经过点$E,$$G$
∴设$y_{3}=kx+b$
则$\begin {cases}{2k+b=1}\\{\frac 12k+b=4}\end {cases},$解得$\begin {cases}{k=-2}\\{b=5}\end {cases}$
∴函数$y_{3}$的表达式为$y_{3}=-2x+5,$∴$P(0,$$5)$
设$CD$与$y$轴的交点为$M,$$PM=OP-OM=1$
∴$S_{△PGH}=\frac 12HG· PM=\frac 12×1×1=\frac 12$
$②$当$y=0$时,则$-2x+5=0,$即$x=\frac 52$
∴当$0<x<\frac 12$或$2<x<\frac 52$时,$y_{1}>y_{3}>0$
$(2)∆PGH$的面积不变化,理由如下:
∵点$A(m,$$0),$$B(m-a,$$0),$$y_{1}=\frac {m}{x},$$y_{2}=\frac {m-a}{x}$
∴点$E(m,$$1),$$G(\frac {m}{a},$$a),$$H(\frac {m-a}{a},$$a).$
设$y_{3}=k_{1}x+b_{1}$
则$\begin {cases}{k_{1}m+b_{1}=1}\\{\frac {k_{1}m}{a}+b_{1}=a}\end {cases}$
∴$b_{1}=a+1,$∴$P(0,$$a+1)$
∴$PM=OP-OM=1$
∴$S_{△PGH}=\frac 12HG· PM=\frac 12(\frac {m}{a}-\frac {m-a}{a})×1=\frac 12$