首 页
电子课本网
›
第6页
第6页
信息发布者:
$=\frac {ab^2}{6ac}$
$=\frac {b^2}{6c} $
$=\frac {3xy^3}{4z^2}· (-\frac {8z^2}{y})$
$=-\frac {24xy^2z^2}{4z^2y}$
$=-6xy$
$=\frac {(-2m)^3}{(3n)^3}$
$=-\frac {8\ \mathrm {m^3}}{27n^6}$
$=\frac 2{(x+1)(x-1)}· (x-1)$
$=\frac 2{x+1}$
$=\frac {(x+1)(x-1)}{x(x+2)}· \frac x{x-1}$
$=\frac {x+1}{x+2}$
$=\frac {(x+1)^2}{(x+1)(x-1)}· \frac 1{x+1}$
$=\frac 1{x-1}$
$=\frac {(x+2)(x-2)}{4x^2y}· \frac {6x^3y}{3(x+2)}$
$=\frac {x(x-2)}2$
$=\frac {x}{(x+1)(x-1)}· \frac {x(x+1)}{x²}$
$=\frac {1}{x-1}$
$=\frac {(x+1)^2}{(x+1)(x-1)}· \frac {x(x-1)}{x+1}$
$=x$
$=\frac {a+3}{1-a}· \frac {(a-1)^2}{a(a+3)}$
$=\frac {a+3}{1-a}· \frac {(1-a)^2}{a(a+3)}$
$=\frac {1-a}{a}$
$=\frac {\mathrm {m^2}}{n^2}· \frac {n}{m}· (-\frac {n^2}{m})$
$=\frac {m}{n}· (-\frac {n^2}{m})$
$=-n$
$=\frac {ab^2}{2c^2}· \frac {4cd}{-3a^2b^2}· \frac {-3}{2d}$
$=\frac 1{ac}$
$=-\frac {a-1}{a+2}· \frac {(a+2)(a-2)}{(a-1)^2}· (a+1)(a-1)$
$= -(a-2)(a+1)$
$=-a^2+a+2$
$ =-x(x-y)· \frac {xy}{(x-y)^2}· \frac {x-y}{x^2}$
$=-y$
上一页
下一页