首 页
电子课本网
›
第7页
第7页
信息发布者:
$=\frac {x-1}x· \frac {x^2}{x-1}$
$=x$
$=\frac x{x+1}-\frac {x+3}{x+1}· \frac {(x+1)(x-1)}{(x+3)(x-1)}$
$=\frac x{x+1}-\frac {x+1}{x+1} $
$=-\frac 1{x+1}$
$=\frac {a}{a+1}-\frac {a-1}{a}· \frac {a(a+2)}{(a+1)(a-1)}$
$=\frac {a}{a+1}-\frac {a+2}{a+1}$
$= \frac {a-a-2}{a+1}$
$=-\frac 2{a+1}$
$=[\frac {a-2}{a+2}-\frac {a+8}{(a+2)^2}]· \frac {a+2}{a-4}$
$=\frac {(a+2)(a-2)-(a+8)}{(a+2)^2}· \frac {a+2}{a-4}$
$=\frac {a^2-a-12}{a+2}· \frac 1{a-4}$
$=\frac {(a-4)(a+3)}{a+2}· \frac 1{a-4}$
$=\frac {a+3}{a+2} $
解:原式$=[\frac {3(x-1)}{(x-1)^2}-\frac 3{(x-1)^2}· \frac {x-1}{x-2}$
$=\frac {3x-6}{(x-1)^2}· \frac {x-1}{x-2}$
$=\frac {3(x-2)(x-1)}{(x-1)^2(x-2)}$
$=\frac 3{x-1}$
当$x=-1$时,原式$=\frac 3{-1-1}=-\frac 32$
解:原式$=\frac {a-3}{3a(a-2)}÷\frac {(a+2)(a-2)-5}{a-2}=\frac {a-3}{3a(a-2)}· \frac {a-2}{(a+3)(a-3)}=\frac 1{3a(a+3)}$
由$a^2+3a+2=0,$得$a^2+3a=-2,$即$a(a+3)=-2$
则原式$=-\frac 16$
上一页
下一页