电子课本网 第7页

第7页

信息发布者:
​$=\frac {x-1}x· \frac {x^2}{x-1}$​
​$=x$​
​$=\frac x{x+1}-\frac {x+3}{x+1}· \frac {(x+1)(x-1)}{(x+3)(x-1)}$​
​$=\frac x{x+1}-\frac {x+1}{x+1} $​
​$=-\frac 1{x+1}$​
​$=\frac {a}{a+1}-\frac {a-1}{a}· \frac {a(a+2)}{(a+1)(a-1)}$​
​$=\frac {a}{a+1}-\frac {a+2}{a+1}$​
​$= \frac {a-a-2}{a+1}$​
​$=-\frac 2{a+1}$​
​$=[\frac {a-2}{a+2}-\frac {a+8}{(a+2)^2}]· \frac {a+2}{a-4}$​
​$=\frac {(a+2)(a-2)-(a+8)}{(a+2)^2}· \frac {a+2}{a-4}$​
​$=\frac {a^2-a-12}{a+2}· \frac 1{a-4}$​
​$=\frac {(a-4)(a+3)}{a+2}· \frac 1{a-4}$​
​$=\frac {a+3}{a+2} $​
解:原式​$=[\frac {3(x-1)}{(x-1)^2}-\frac 3{(x-1)^2}· \frac {x-1}{x-2}$​
​$=\frac {3x-6}{(x-1)^2}· \frac {x-1}{x-2}$​
​$=\frac {3(x-2)(x-1)}{(x-1)^2(x-2)}$​
​$=\frac 3{x-1}$​
当​$x=-1$​时,原式​$=\frac 3{-1-1}=-\frac 32$​
解:原式​$=\frac {a-3}{3a(a-2)}÷\frac {(a+2)(a-2)-5}{a-2}=\frac {a-3}{3a(a-2)}· \frac {a-2}{(a+3)(a-3)}=\frac 1{3a(a+3)}$​
由​$a^2+3a+2=0,$​得​$a^2+3a=-2,$​即​$a(a+3)=-2$​
则原式​$=-\frac 16$​