电子课本网 第55页

第55页

信息发布者:
D
解:把​$x = 1,$​​$y = 0$​和​$x = 2,$​​$y = 3$​分别代入​$y = ax^2+bx+1$​得​$\begin {cases}a + b+1 = 0\\4a + 2b + 1 = 3\end {cases}$​
​$ $​由​$a + b+1 = 0$​可得​$b = -a - 1$​
​$ $​将​$b = -a - 1$​代入​$4a + 2b + 1 = 3$​得:​$4a + 2×(-a - 1)+1 = 3$​
解得​$a = 2$​
​$ $​把​$a = 2$​代入​$b = -a - 1$​得​$b=-3$​
∴​$(a + b)^{2025}=(2 - 3)^{2025}=(-1)^{2025}=-1$​
解:∵两个方程组有相同的解
∴有方程组​$\begin {cases}4x + y = 5\\3x + 2y = 5\end {cases}$​
​$ $​由​$4x + y = 5$​得​$y = 5 - 4x$​
​$ $​将​$y = 5 - 4x$​代入​$3x + 2y = 5$​得​$3x + 2×(5 - 4x)=5$​
解得​$x = 1$​
​$ $​把​$x = 1$​代入​$y = 5 - 4x$​得​$y=1$​
​$ $​把​$\begin {cases}x = 1\\y = 1\end {cases}$​代入​$\begin {cases}ax - by = - 5\\ax + by = 1\end {cases}$​得​$\begin {cases}a - b=-5\\a + b = 1\end {cases}$​
∴​$a^2-b^2=(a+b)(a -b)=1×(-5)=-5$​

解:​$(2)$​对于方程组​$\begin {cases}2x - y = 12①\\4x + y = 12\ \mathrm {m}②\end {cases}$​
① + ②,得​$6x = 12 + 12\ \mathrm {m},$​即​$x = 2 + 2m$​
​$ $​把​$x = 2 + 2m $​代入​$①,$​得​$y = 4m - 8$​
∴​$x - y = 2 + 2m-(4m - 8)=10 - 2m$​
∵方程组的解​$x,$​​$y$​具有​$''$​邻好关系
∴​$|x - y| = 1,$​即​$10 - 2m=±1$​
​$ $​当​$10 - 2m = 1$​时,​$2m = 9,$​​$m = 4.5$​
​$ $​当​$10 - 2m = -1$​时,​$2m = 11,$​​$m = 5.5$​
∴​$m = 4.5$​或​$m = 5.5$​