证明:$(1)$设这个四位数是$\overline {abcd},$则$\overline {abcd}=1000a + 100b + 10c + d$
$=(999a + 99b + 9c)+(a + b + c + d)$
$=3(333a + 33b + 3c)+(a + b + c + d)$
$ $若$a + b + c + d$可以被$3$整除,∵$3(333a + 33b + 3c)$能被$3$整除
∴这个数$\overline {abcd}$可以被$3$整除
$ (2) $设$y_{1} = x_{1}^2,$$y_{2} = x_{2}^2,$则$y_{1} - y_{2} = x_{1}^2 - x_{2}^2=(x_{1} + x_{2})(x_{1} - x_{2})$
$ $当$x_{1}>x_{2}>0$时,$x_{1} + x_{2}>0,$$x_{1} - x_{2}>0$
∴$(x_{1} + x_{2})(x_{1} - x_{2})>0,$即$y_{1} - y_{2}>0,$∴$y_{1}>y_{2}$