解:已知$4×16^{m}×64^{m}=4^{21}$
∵$4 = 2^2,$$16 = 2^4,$$64 = 2^6$
∴$2^2×2^{4m}×2^{6m}=2^{2 + 4m + 6m}=2^{2+10m},$又$4^{21}=(2^2)^{21}=2^{42}$
$ $则$2 + 10m = 42,$解得$m = 4$
原式$=(-1)^3·(\mathrm {m^2})^3÷m^{3 + 2}=-m^6÷ m^5=-m$
$ $把$m = 4$代入可得$-m=-4$