证明:绿道面积是大正方形面积$S_{1}$与小正方形$($花坛$)$面积$S_{2}$之差
∵$S_{2}=b^2,$大正方形边长为$\frac {l}4+\frac {a}2×2=\frac {l}4+a$
∴$S_{1}=(\frac {l}4+a)^2,$同时$b = \frac {l}4-a$
$ $则$S= S_{1}-S_{2}=(\frac {l}4+a)^2-b^2=(\frac {l}4+a)^2-(\frac {l}4-a)^2$
$= [(\frac {l}4+a)+(\frac {l}4-a)][(\frac {l}4+a)-(\frac {l}4-a)]$
$ =(\frac {l}4+a+\frac {l}4-a)(\frac {l}4+a-\frac {l}4+a)$
$ =\frac {l}2×2a$
$ = al$
∴绿道的面积$S= al$