解:$(1)$原式$=(\frac 1 4{x}^2+4{y}^2+2xy)+(\frac 1 4{x}^2+4{y}^2-2xy)$
$ =\frac 1 2{x}^2+8{y}^2$
$(2)$原式$={(200-1)}^2$
$ ={200}^2+{1}^2-2×200×1$
$ =40000+1-400$
$ =39601$
$(3)$原式$={(a-b)}^2+{c}^2+2(a-b)c$
$ ={a}^2+{b}^2-2ab+{c}^2+2ac-2bc$
$ ={a}^2+{b}^2+{c}^2-2ab+2ac-2bc$