电子课本网 第2页

第2页

信息发布者:
$解:(1)数轴可知:b-c>0,b+c<0,a-c<0,a-b<0$
$则原式=2(b-c)+(b+c)-(a-c)+(a-b)$
$=2b-2c+b+c-a+c+a-b$
$=2b$
$(2)由题意:c+4=0,a+c+10=0$
$解得c=-4,a=-6,则b=|-6-(-4)|=2$
$则2b=4$
C
D
$-\frac{2}{5}$
$4$
$2$
$解:原式=\frac {1}{2}-\frac {1}{3}+\frac {1}{3}-\frac {1}{4}+...+\frac {1}{9}-\frac {1}{10}$
$=\frac {1}{2}-\frac {1}{10}$
$=\frac {2}{5}$
证明:
$\begin{aligned}&\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\cdots+\frac{1}{(2n - 1)\times(2n+1)}\\=&\frac{1}{2}\times\left(1-\frac{1}{3}\right)+\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}\times\left(\frac{1}{5}-\frac{1}{7}\right)+\cdots+\frac{1}{2}\times\left(\frac{1}{2n - 1}-\frac{1}{2n+1}\right)\\=&\frac{1}{2}\times\left[\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\cdots+\left(\frac{1}{2n - 1}-\frac{1}{2n+1}\right)\right]\\=&\frac{1}{2}\times\left(1-\frac{1}{2n + 1}\right)\\=&\frac{1}{2}\times\frac{2n+1 - 1}{2n+1}\\=&\frac{n}{2n+1}\\\end{aligned}$
因为$n$为正整数,所以$\frac{n}{2n + 1}<\frac{1}{2}。$