$(2) 解:设D(m,m^2-2m-3),连接OD则0<m<3,m^2-2m-3<0 $
$且S_{△AOC}=\frac{3}{2} $
$S_{△DOC}=\frac {3}{2}mS_{△DOB}$
$$$=-\frac{3}{2}(m^2-2m-3)$$$
$∴S_{四边形ABDC}=S_{△AOC}+S_{△DOC}+S_{△DOB} $
$=-\frac{3}{2}m^2+\frac{9}{2}m+6$
$=-\frac{3}{2}(m-\frac{3}{2})^2+\frac{75}{8}$
$∴存在点D(\frac{3}{2},-\frac{15}{4})\ $
$使四边形ABDC的面积最大,且最大值为\frac{75}{8} $
(3) 因为$S_{\triangle APC}=S_{\triangle APB},$$\triangle APC$与$\triangle APB$有相同
$的底$$AP,$$所以$$B,$$$$C$$到直线$$AP$$的距离相等。$
① 当$BC// AP$时,
$k_{BC}=\frac{0 - (-3)}{3 - 0}=1,$设直线$AP$的方程为$y=x + m,$
把$A(-1,0)$代入得$0=-1 + m,$$m = 1,$即$y=x + 1。$
联立$\begin{cases}y=x + 1\\y=x^{2}-2x - 3\end{cases},$
$$则$x + 1=x^{2}-2x - 3,$$x^{2}-3x - 4=0,$$(x - 4)(x+1)=0,$
解得$x_1 = 4,$$x_2=-1$(舍去),当$x = 4$时,$y=4 + 1 = 5,$$P(4,5)。$
② 当$AP$过$BC$中点$(\frac{3 + 0}{2},\frac{0+( - 3)}{2})$
$即$$(\frac{3}{2},-\frac{3}{2})$$时,$
设直线$AP$的方程为$y=kx + n,$把$A(-1,0),$$(\frac{3}{2},-\frac{3}{2})$代入
$\begin{cases}0=-k + n\\-\frac{3}{2}=\frac{3}{2}k + n\end{cases},$
由$n = k$代入$-\frac{3}{2}=\frac{3}{2}k + n$得$-\frac{3}{2}=\frac{3}{2}k + k,$$-\frac{3}{2}=\frac{5}{2}k,$$k=-\frac{3}{5},$$n=-\frac{3}{5},$$y=-\frac{3}{5}x-\frac{3}{5}。$
联立$\begin{cases}y=-\frac{3}{5}x-\frac{3}{5}\\y=x^{2}-2x - 3\end{cases},$$x^{2}-2x - 3=-\frac{3}{5}x-\frac{3}{5},$$5x^{2}-10x - 15=-3x - 3,$$5x^{2}-7x - 12=0,$$(5x + 12)(x - 1)=0,$
$$解得$x_1=\frac{12}{5},$$x_2 = 1$(舍去),当$x=\frac{12}{5}$时,$y=-\frac{3}{5}\times\frac{12}{5}-\frac{3}{5}=-\frac{36 + 15}{25}=-\frac{51}{25},$$P(\frac{12}{5},-\frac{51}{25})。$
综上,$P$点坐标为$(4,5)$或$(\frac{12}{5},-\frac{51}{25})。$