电子课本网 第47页

第47页

信息发布者:
解:(1)解方程$x^{2}-4x - 12 = 0,$
因式分解得$(x - 6)(x + 2)=0,$
则$x - 6 = 0$或$x + 2 = 0,$
解得$x_1 = 6,$$x_2=-2。$
因为点$A$在点$B$的左侧,所以$A(-2,0),$$B(6,0)。$
把$A(-2,0),$$B(6,0)$代入$y = ax^{2}+bx + 6$得:
$\begin{cases}4a-2b + 6 = 0\\36a+6b + 6 = 0\end{cases},$
由$4a-2b + 6 = 0$可得$2b=4a + 6,$即$b = 2a+3,$
将$b = 2a+3$代入$36a+6b + 6 = 0$得:
$36a+6(2a + 3)+6 = 0,$
$36a+12a+18 + 6 = 0,$
$48a=-24,$
解得$a=-\frac{1}{2},$
则$b = 2\times(-\frac{1}{2})+3=2,$
所以二次函数表达式为$y =-\frac{1}{2}x^{2}+2x + 6。$
对于二次函数$y =-\frac{1}{2}x^{2}+2x + 6,$其对称轴为$x=-\frac{b}{2a}=-\frac{2}{2\times(-\frac{1}{2})}=2,$
当$x = 2$时,$y=-\frac{1}{2}\times2^{2}+2\times2 + 6=8,$所以顶点坐标为$(2,8)。$
(2)设直线$BC$的表达式为$y = kx + c,$把$B(6,0),$$C(0,6)$代入得:
$\begin{cases}6k + c = 0\\c = 6\end{cases},$
解得$\begin{cases}k=-1\\c = 6\end{cases},$所以直线$BC$的表达式为$y=-x + 6。$
因为$PQ// AC,$设直线$PQ$的表达式为$y = k_1x + b_1,$直线$AC$的斜率$k_{AC}=\frac{6 - 0}{0+2}=3,$所以$k_1 = 3,$则直线$PQ$的表达式为$y = 3x + b_1。$
设$P(t,0)(0\lt t\lt6),$把$P(t,0)$代入$y = 3x + b_1$得$0 = 3t + b_1,$$b_1=-3t,$所以直线$PQ$的表达式为$y = 3x-3t。$
联立$\begin{cases}y = 3x-3t\\y=-x + 6\end{cases},$解得$\begin{cases}x=\frac{3}{2}+\frac{3t}{4}\\y=\frac{9}{2}-\frac{3t}{4}\end{cases},$所以$Q(\frac{3}{2}+\frac{3t}{4},\frac{9}{2}-\frac{3t}{4})。$
$S_{\triangle CPQ}=S_{\triangle BCP}-S_{\triangle BPQ},$
$S_{\triangle BCP}=\frac{1}{2}\times BP\times OC=\frac{1}{2}\times(6 - t)\times6 = 3(6 - t),$
$S_{\triangle BPQ}=\frac{1}{2}\times BP\times y_Q=\frac{1}{2}\times(6 - t)\times(\frac{9}{2}-\frac{3t}{4}),$
则$S_{\triangle CPQ}=3(6 - t)-\frac{1}{2}\times(6 - t)\times(\frac{9}{2}-\frac{3t}{4})=(6 - t)(3-\frac{9}{4}+\frac{3t}{8})=(6 - t)(\frac{3}{4}+\frac{3t}{8})=-\frac{3}{8}t^{2}+\frac{3}{4}t+\frac{9}{2}。$
对于二次函数$S_{\triangle CPQ}=-\frac{3}{8}t^{2}+\frac{3}{4}t+\frac{9}{2},$其对称轴为$t =-\frac{\frac{3}{4}}{2\times(-\frac{3}{8})}=1,$因为二次项系数$-\frac{3}{8}\lt0,$所以当$t = 2$时,$S_{\triangle CPQ}$最大,此时$P(2,0)。$
B
A
$(0,-3),$$(2,-3),$$(\sqrt{7}+1,3),$$(-\sqrt{7}+1,3)$