$\ 解:(1) 在y=-2x + 6中,令y = 0,则-2x + 6 = 0,解得x = 3;$
$令x = 0,则y = 6.\ \therefore A(3,0),B(0,6).\ $
$把A(3,0),B(0,6)代入y=-x^{2}+bx + c,$
$得\begin{cases}-9 + 3b + c = 0\\c = 6\end{cases},解得\begin{cases}b = 1\\c = 6\end{cases},$
$\therefore抛物线对应的函数表达式为y=-x^{2}+x + 6$
$\ (2) 存在 设D(t,-t^{2}+t + 6)(0<t<3),则E(t,-2t + 6),C(t,0).\ $
$\therefore CE=-2t + 6,AC = 3 - t,DE=-t^{2}+3t.$
$\ \because\triangle BDE和\triangle ACE相似,\angle BED=\angle AEC,$
$\therefore\triangle ACE\sim\triangle BDE或\triangle ACE\sim\triangle DBE.\ $
$①如图①,当\triangle ACE\sim\triangle BDE时,\angle ACE=\angle BDE = 90^{\circ},$
$\therefore BD// AC. \therefore点D的纵坐标为6.\ $
$\therefore -t^{2}+t + 6 = 6,解得t = 0(不合题意,舍去)或t = 1.\ $
$\therefore D(1,6).\ $
$②如图②,当\triangle ACE\sim\triangle DBE时,\angle CAE=\angle BDE.\ $
$过点B作BH\perp CD于点H,则H(t,6),\angle BHD = 90^{\circ}.$
$\ \therefore BH = t,DH=-t^{2}+t.\ $
$\because\tan\angle BDE=\frac{BH}{DH},\tan\angle CAE=\frac{OB}{OA},$
$且\angle BDE=\angle CAE,$
$\therefore\frac{t}{-t^{2}+t}=\frac{6}{3},解得t = 0(不合题意,舍去)或t=\frac{1}{2}.\ $
$经检验,t=\frac{1}{2}是原方程的解,且符合题意.$
$\ \therefore D(\frac{1}{2},\frac{25}{4}).\ $
$综上所述,点D的坐标为(1,6)或(\frac{1}{2},\frac{25}{4})\ $
$(3) 如图③,\because四边形EGFD为菱形,$
$\therefore DE// FG,DE = FG,DE = EG.\ $
$设D(m,-m^{2}+m + 6)(0<m<3),则E(m,-2m + 6).$
$\ \therefore DE=-m^{2}+3m.\ $
$设F(n,-n^{2}+n + 6)(0<n<3,且n\neq m),则G(n,-2n + 6).\ $
$\therefore FG=-n^{2}+3n.\ \because DE = FG,$
$\therefore -m^{2}+3m=-n^{2}+3n,即(m - n)(m + n - 3)=0.\ $
$\because n\neq m,\therefore m - n\neq_{0}.\ $
$\therefore m + n - 3 = 0,即n = 3 - m.\ \because A(3,0),B(0,6),$
$\therefore AO = 3,BO = 6.$
$\ \therefore AB=\sqrt{AO^{2}+BO^{2}}=3\sqrt{5}.\ $
$过点G作GK\perp DE于点K,\therefore KG// AC.$
$\ \therefore\angle EGK=\angle BAC.\ $
$\because\cos\angle EGK=\frac{KG}{EG},\cos\angle BAC=\frac{AO}{AB},$
$\ \therefore\frac{n - m}{EG}=\frac{3}{3\sqrt{5}}.\ $
$\therefore EG=\sqrt{5}(n - m)=\sqrt{5}(3 - 2m).\ $
$\because DE = EG,\therefore -m^{2}+3m=\sqrt{5}(3 - 2m).\ $
$\therefore m^{2}-(3 + 2\sqrt{5})m+3\sqrt{5}=0,$
$解得m=\frac{3 + 2\sqrt{5}+\sqrt{29}}{2}(不合题意,舍去)或m=\frac{3 + 2\sqrt{5}-\sqrt{29}}{2}.$
$\ \therefore点D的横坐标为\frac{3 + 2\sqrt{5}-\sqrt{29}}{2}$