解:
(1)
$\begin{aligned}(-3x^{2m}y^{3n + 1})\cdot(4x^{4}y^{-3})&=-12x^{2m + 4}y^{3n - 2}\end{aligned}$
因为与$-5x^{2}y^{4}$是同类项,所以$\begin{cases}2m+4 = 2\\3n - 2 = 4\end{cases},$
由$2m+4 = 2$得$2m=-2,$$m=-1;$
由$3n - 2 = 4$得$3n=6,$$n = 2。$
(2)
$\begin{aligned}&(m + n)^{2}-2m(m + 3n)+(m + 2n)(m - 2n)\\=&m^{2}+2mn + n^{2}-2m^{2}-6mn+m^{2}-4n^{2}\\=&(m^{2}-2m^{2}+m^{2})+(2mn-6mn)+(n^{2}-4n^{2})\\=&-4mn - 3n^{2}\end{aligned}$
将$m=-1,$$n = 2$代入得:$-4\times(-1)\times2-3\times2^{2}=8 - 12=-4。$