解:
(1)$S$的值与$a$的取值有关。
$\begin{aligned}S&=a^{2}+b^{2}-\frac{1}{2}a^{2}-\frac{1}{2}(a + b)b\\&=a^{2}+b^{2}-\frac{1}{2}a^{2}-\frac{1}{2}ab-\frac{1}{2}b^{2}\\&=\frac{1}{2}a^{2}-\frac{1}{2}ab+\frac{1}{2}b^{2}\end{aligned}$
因为式子中有$a,$所以$S$的值与$a$的取值有关。
(2)
$\begin{aligned}S&=\frac{1}{2}a^{2}-\frac{1}{2}ab+\frac{1}{2}b^{2}\\&=\frac{1}{2}(a^{2}+b^{2}-ab)\\&=\frac{1}{2}[(a + b)^{2}-3ab]\end{aligned}$
将$a + b = 10,$$ab = 21$代入得:$\frac{1}{2}(10^{2}-3\times21)=\frac{1}{2}(100 - 63)=\frac{37}{2}。$
(3)
$\begin{aligned}S&=\frac{1}{2}a^{2}-\frac{1}{2}ab+\frac{1}{2}b^{2}\\&=\frac{1}{2}(a^{2}+b^{2}-ab)\end{aligned}$
因为$a - b = 2,$所以$(a - b)^{2}=a^{2}-2ab + b^{2}=4,$又$a^{2}+b^{2}=7,$则$7-2ab = 4,$$ab=\frac{3}{2}。$
$\begin{aligned}S&=\frac{1}{2}(7-\frac{3}{2})=\frac{1}{2}\times\frac{11}{2}=\frac{11}{4}\end{aligned}$
所以$S^{2}=(\frac{11}{4})^{2}=\frac{121}{16}。$